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Abstract

We establish existence of Stein kernels for probability measures on Rd

satisfying a Poincaré inequality, and obtain bounds on the Stein discrepancy
of such measures. Applications to quantitative central limit theorems are
discussed, including a new CLT in Wasserstein distance W2 with optimal
rate and dependence on the dimension. As a byproduct, we obtain a stability
version of an estimate of the Poincaré constant of probability measures under
a second moment constraint. The results extend more generally to the setting
of converse weighted Poincaré inequalities. The proof is based on simple
arguments of calculus of variations.

Further, we establish two general properties enjoyed by the Stein discrep-
ancy, holding whenever a Stein kernel exists: Stein discrepancy is strictly
decreasing along the CLT, and it controls the skewness of a random vector.

1 Introduction

What is known as Stein’s method is a vast array of concepts and techniques for
proving quantitative convergence of sequences of random variables to some limit.
These ideas originated in the work of Stein [47, 48], and have found many appli-
cations in the study of quantitative central limit theorems, Poisson and geometric
approximation, concentration of measure, random matrix theory and free proba-
bility. We refer to the survey [45] for an overview of the topic.

In this work, we shall be interested in one particular concept used in this
setting: Stein kernels (also known as Stein factors) and their use in proving quan-
titative central limit theorems. To this end, let ν be a probability measure on Rd.
A matrix-valued function τν : Rd −→ Md(R) is said to be a Stein kernel for ν
(with respect to the standard Gaussian measure γ on Rd) if for any smooth test
function ϕ taking values in Rd, we have∫

x · ϕdν =

∫
〈τν ,∇ϕ〉HSdν. (1)
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For applications, it generally suffices to consider the restricted class of test func-
tions ϕ satisfying

∫
(|ϕ|2 + ‖∇ϕ‖2HS)dν < ∞, in which case both integrals in (1)

are well-defined as soon as τν ∈ L2(ν), provided ν has finite second moments. We
shall adopt this convention throughout.

In parts of the literature, the notion of Stein kernel is replaced by the relation∫
x · ∇ϕdν =

∫
〈τν ,Hessϕ〉HSdν (2)

for all smooth real-valued function ϕ. This notion is slightly weaker compared to
(1) since it only requires test functions that are gradients, but for some applications
it still suffices. Our results will hold for either definition, but we shall adopt the
stronger notion (1) throughout since the improvement comes for free.

The motivation behind the definition is that, since the Gaussian measure is
the only probability distribution satisfying the integration by parts formula∫

x · ϕdγ =

∫
div(ϕ)dγ, (3)

the Stein kernel τν coincides with the identity matrix, denoted by Id, if and only if
the measure ν is equal to γ. In this way, the Stein kernel can be seen as a measure
of how far ν is from being a standard Gaussian measure in terms of how much it
violates the integration by parts formula (3). Those kernels appear implicitly in
many works on Stein’s method, and have recently been the topic of more direct
investigations [4, 40, 41, 42, 33].

The question of when a Stein kernel exists for a particular measure ν is a
nontrivial one, and only a few results are known along this direction. In dimension
one, it suffices to have a density with connected support to ensure existence.
Indeed, if ν has a density p that does not vanish on the (possibly infinite) interval
(a, b), then the Stein kernel τν is unique up to sets of measure zero, and is given
by

τν(x) :=
1

p(x)

∫ ∞
x

yp(y)dy. (4)

In general, however, Stein kernels are not necessarily unique when they exist. A
more detailed study of the one-dimensional case and its generalizations to non-
Gaussian reference measures can be found in [34].

In higher dimension, existence of Stein kernels has been previously studied
using the tools of Malliavin calculus [39]. In particular, if a random variable
can be realized as the image of a Gaussian random variable by a C∞ function
with derivatives of at most polynomial growth, then a Stein kernel exists. An-
other explicit formula for one-dimensional random variables that arise as smooth
functions of some gaussian vector was also obtained in [22]. However, given a
probability distribution, it may be difficult to find such a smooth function. For
example, Brenier’s theorem in optimal transport [20] tells us that under fairly
general assumptions there exists a map sending a Gaussian random variable onto
the distribution considered, but in general it is not smooth enough to apply the
arguments of [39].
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Our main results are roughly divided into two categories: sufficient conditions
for existence of Stein kernels in arbitrary dimension, and general bounds on the
so-called Stein discrepancy which hold whenever a Stein kernel exists. Specifically,
we first show that if ν satisfies a Poincaré inequality, or more generally a converse
weighted Poincaré inequality, then a Stein kernel exists. This affirmatively an-
swers a question raised in [42]. In doing so, we obtain bounds on the associated
Stein discrepancy for measures satisfying a Poincaré inequality. These estimates
are dimension-free and depend only on the second moment and the Poincaré con-
stant. We further establish two properties enjoyed by Stein discrepancy that hold
in general, whenever a Stein kernel exists. First, like entropy and Fisher informa-
tion, Stein discrepancy is monotone along the CLT. Second, Stein discrepancy is
bounded from below by the skewness of a random vector.

These results lead to optimal rates of convergence in the multidimensional
Central Limit Theorem in Wasserstein distance W2, as well as entropic CLTs, with
suboptimal rate. Our main estimate can also be reformulated as a quantitative
improvement of the fact that among all isotropic measures, the standard Gaussian
measure has the best Poincaré constant.

2 On existence of Stein kernels

Let ν be a probability measure on Rd. Henceforth, we make the following assump-
tion:

Assumption. The measure ν is absolutely continuous with respect to the Lebesgue
measure, and has finite second moment, i.e.

∫
|x|2dν <∞.

We shall work in the Sobolev space W 1,2
ν of vector valued functions, which we

define as as the closure of the set of all smooth vector-valued functions f : Rd −→
Rd in L2(ν), with respect to the usual Sobolev norm

∫
(|f |2 + ‖∇f‖2HS)dν. We

also define its restriction to the set of (vector-valued) functions with average zero
W 1,2
ν,0 := W 1,2

ν
⋂{

f :
∫
fdν = 0

}
.

Definition 2.1. A function τν : Rd −→Md(R) is a Stein kernel for ν if for any
ϕ ∈W 1,2

ν equation (1) holds. The Stein discrepancy is defined as

S(ν|γ)2 := inf

∫
‖τν − Id‖2HSdν,

where the infimum is taken over all Stein kernels of ν, and takes value +∞ if no
Stein kernel exists.

One of the main applications of Stein kernels is that bounds on the Stein
discrepancy can be used to obtain rates of convergence in the central limit theorem,
as discussed in Section 4.

Definition 2.2. A probability measure ν is said to satisfy a Poincaré inequality
with constant Cp if for any locally Lipschitz function f ∈ L2(ν) we have

Varν(f) ≤ Cp
∫
|∇f |2dν.
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A measure satisfying a Poincaré inequality is also said to have spectral gap.
The terminology comes from the fact that C−1p is a lower bound on the smallest

positive eigenvalue of the operator −∆ +∇H · ∇ in L2(ν), where H = − log dν
dx .

There is a vast literature on Poincaré inequalities, with many examples and
abstract results giving sufficient conditions for one to hold. In particular, the class
of measures satisfying a Poincaré inequality is stable under bounded perturbations
and tensor products, and it contains the set of all log-concave probability measures.
A more general sufficient condition for a measure with density e−V to have spectral
gap is

∃a ∈ (0, 1), R ≥ 0, c > 0 such that a|∇V (x)|2 −∆V (x) ≥ c ∀|x| ≥ R,

which was obtained in [6]. We refer to [5] for more background on Poincaré
inequalities.

2.1 Finite Poincaré constant ensures existence of Stein kernel

Our main result of this section is that a Poincaré inequality ensures existence
of a Stein kernel, and moreover that the Poincaré constant controls the Stein
discrepancy. Stated more precisely,

Theorem 2.3. Assume that ν is centered and satisfies a Poincaré inequality with
constant Cp. Then there exists a unique function g ∈ W 1,2

ν,0 such that τν = ∇g is
a Stein kernel for ν. Moreover,∫

‖τν‖2HSdν ≤ Cp
∫
|x|2dν (5)

so that the Stein discrepancy satisfies

S(ν|γ)2 ≤ (Cp − 2)

∫
|x|2dν + d

The centering assumption on ν is necessary for the theorem to hold. Indeed,
a necessary condition for existence of a Stein kernel is that ν is centered, seen by
taking ϕ = 1 in the defining equation (1).

In most situations, we shall be using the above bounds for measures with
second moment normalized with respect to dimension (e.g., as is the case for
isotropic measures):

Corollary 2.4. Let ν be a centered probability measure on Rd satisfying a Poincaré
inequality with constant Cp, normalized so that

∫
|x|2dν = d. Then

S(ν|γ)2 ≤ d(Cp − 1).

A few remarks are in order:

• The standard Gaussian measure γ has Poincaré constant Cp = 1, so the
above estimates dictate S(γ|γ) = 0, as desired.
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• Stein discrepancy is additive on product measures (i.e., S(ν⊗k|γ⊗k)2 =
kS(ν|γ)2), whereas the Poincaré constant is independent of dimension (i.e.,
Cp(ν

⊗k) = Cp(ν)). Thus, our estimates are dimension-free in nature.

• A finite Poincaré constant is by no means necessary for existence of a Stein
kernel. In dimension one, the formula (4) works in more general situations.
We will see other multi-dimensional examples further on.

Proof of Theorem 2.3. The result follows from an application of the Lax-Milgram
theorem [32]. Indeed,

∫
〈∇f,∇h〉HSdν is a continuous bi-linear functional on

W 1,2
ν,0 × W 1,2

ν,0 , and is coercive by the assumption that ν satisfies a Poincaré in-

equality. Hence, there exists a unique g ∈W 1,2
ν,0 such that∫

〈∇g,∇f〉HSdν =

∫
x · fdν

for any f ∈W 1,2
ν,0 , and in particular ∇g is a Stein kernel.

In addition, g minimizes the functional J(f) := 1
2

∫
‖∇f‖2HSdν −

∫
x · fdν.

Indeed,

J(f) =
1

2

∫
‖∇f‖2HSdν −

∫
x · fdν

=
1

2

∫
‖∇f‖2HSdν −

∫
〈∇g,∇f〉HSdν

≥ −1

2

∫
‖∇g‖2HSdν =

1

2

∫
‖∇g‖2HSdν −

∫
x · gdν = J(g).

Noting from above that J(g) = −1
2

∫
‖∇g‖2HSdν, the Cauchy-Schwarz inequality

and the Poincaré inequality for ν give, after a simple computation,

−1

2

∫
‖∇g‖2HSdν = J(g) ≥ 1

2Cp

∫
|g|2dν −

(∫
|g|2dν

)1/2(∫
|x|2dν

)1/2

(6)

≥ −Cp
2

∫
|x|2dν, (7)

establishing (5).

Remark 2.1. Even when ν does not satisfy a Poincaré inequality, if g ∈ W 1,2
ν,0

minimizes the functional J : f 7→ 1
2

∫
‖∇f‖2HS −

∫
x · fdν, then ∇g is a Stein

Kernel for ν. To see this, consider a perturbation in the direction h ∈W 1,2
ν,0 , which

gives:

0 ≤ J(g + εh)− J(g)

= ε

(∫
〈∇g,∇h〉dν −

∫
x · hdν

)
+
ε2

2

∫
|∇h|2dν.
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Letting ε ↓ 0 shows that
∫
〈∇g,∇h〉dν ≥

∫
x · hdν. Replacing h by −h gives the

reverse inequality.
Hence, a sufficient condition for existence of a Stein kernel is that the functional

J has a minimum. Stated another way, there exists a finite constant c > 0 such
that (∫

x · fdν
)2

≤ c
∫
‖∇f‖2HSdν ∀f ∈W 1,2

ν,0 , (8)

and moreover, equality is attained for some nonzero function g. This should be
compared against the definition of the Poincaré inequality.

Of course, there exist probability measures that satisfy the (8) condition with-
out satisfying a (converse weighted) Poincaré inequality. For example, if we con-
sider two disjoint closed annuli C1 and C2 that are centered around the origin, then
the uniform probability measure on C1∪C2 does not satisfy a Poincaré inequality,
yet it does satisfy (8).

We conclude this section by noting that, as pointed out in [33], for log-concave
measures there is a reverse version of our inequality:

Proposition 2.5. Let ν be a centered log-concave measure. Then for some nu-
merical constant C,

Cp ≤ C(1 + S(ν|γ)2).

This statement, combined with our main result, tells us that for log-concave
measures, controlling the Stein discrepancy and controlling the Poincaré constant
are equivalent. At first glance, the above estimate does not capture the dimension-
free nature of the Poincaré constant. This may be a necessary downside of such
bounds, since if we consider a measure of the form ν = γd−1 ⊗ ν̃ it behaves in the
correct way, since the Poincaré constant is at least as bad as that of the projection
along the worst direction.

As mentioned in [33], this estimate is obtained by combining the moment
bound of Theorem 2.8 in [33] and Milman’s results on obtaining estimates on
Poincaré constants of log-concave measures by the worst variance of 1-Lipschitz
functions [38].

2.2 Converse weighted Poincaré inequalities

A generalized form of the Poincaré inequality is still enough to ensure existence
of a Stein kernels, up to an additional assumption on moment bounds.

Definition 2.6. A probability measure ν is said to satisfy a converse weighted
Poincaré inequality with weight ω : R −→ R∗+ if for any locally lipschitz f ∈ L2(ν)
we have

inf
c∈R

∫
(f − c)2ωdν ≤

∫
|∇f |2dν.
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This definition originates from [15], and was further studied in [21]. Such
inequalities are related to measure concentration for heavy-tailed distributions.
We could incorporate a constant in front of the Dirichlet form in the definition,
but we have chosen to absorb it into the weight to reduce notations.

Theorem 2.7. Assume that ν is centered and satisfies a converse weighted Poincaré
inequality with weight ω, and that

∫
|x|2ω−1dν < ∞. Then there exists a Stein

kernel τν for ν, that moreover satisfies∫
‖τν‖2HSdν ≤

∫
|x|2ω−1dν.

The proof is exactly the same as for the Poincaré case, we just use ω as an
extra weight when using the Cauchy-Schwarz inequality(∫

x · fdν
)2

≤ inf
c1,..,cd

(∫
|x|2ω−1dν

)(∫ ∑
(fi − ci)2ωdν

)
.

Converse Poincaré inequalities have been established for a large class of heavy-
tailed probability distributions via Lyapunov function techniques in [21]. Here are
some examples from [15, 21]:

Corollary 2.8. Stein kernels exist for the following probability distributions on
Rd:

(i) Generalized Cauchy distributions νβ(dx) := Z−1(1+|x|2)−β for β > max((d+
4)/2, d);

(ii) Probability measures of the form ν(dx) = Z−1e−V (x)p with V convex and
p > 0, as soon as

∫
|x|2+2(1−p)dν <∞. In particular, subexponential distributions

with density proportional to e−|x|
p

with p ∈ (0, 1).

Note that these examples typically do not satisfy a classical Poincaré inequal-
ity.

2.3 Extension to non-Gaussian reference measures

Theorem 2.3 also generalizes to Stein kernels with non-Gaussian reference mea-
sures. Such an extension is natural in the framework of the generator approach
to Stein’s method, where an integration by parts formula for a given measure is
obtained by finding a Markov generator that leaves the considered measure invari-
ant. This approach was pioneered in [9, 28]. Stein’s method for the approximation
of non-Gaussian reference measures has had some successful applications in the
study of convergence of Markov Chain Monte Carlo algorithms [27] and for gener-
alizations of the fourth moment theorem [3]. The Gaussian functional inequalities
of [33] were also extended to a class of non-Gaussian measures, using arguments
from Bakry-Émery calculus.

We can extend Theorem 2.3 to the situation where the Gaussian measure is
replaced by a general reference measure µ = e−V dx, where V : Rd → R is a



8

smooth function. In this situation, a Stein kernel of a measure ν with respect to
µ is defined by the relation∫

∇V · ϕdν =

∫
〈τν ,∇ϕ〉HSdν ∀ϕ ∈W 1,2

ν . (9)

Applying the same arguments as for the Gaussian case, we obtain

Theorem 2.9. Let µ = e−V dx, where V : Rd → R is smooth. Assume that
ν satisfies a Poincaré inequality with constant Cp, that

∫
∇V dν = 0 and that∫

|∇V |2dν <∞. Then there exists a Stein kernel for ν, relative to µ, of the form

τν = ∇g for some g ∈W 1,2
ν . Moreover, we have the bound∫
‖τν‖2HSdν ≤ Cp

∫
|∇V |2dν. (10)

Note that for polynomial potentials V , the finiteness of
∫
|∇V |2dν automati-

cally follows from the Poincaré inequality. As in the previous section, this result
can easily be generalized to cover measures satisfying a converse weighted Poincaré
inequality.

3 General bounds on the Stein discrepancy

3.1 Stein discrepancy controls skewness

Above, it was shown that in presence of a suitable Poincaré inequality, the Stein
discrepancy is controlled from above by second moments. Here, we establish a
complementary lower bound on the Stein discrepancy in terms of skewness:

Theorem 3.1. Let X = (X1, X2, . . . , Xd) have law ν. If ν is isotropic with finite
fourth moment, then

S(ν|γ)2 ≥ 1

9

d∑
i=1

|E[X3
i ]|2.

Proof. First, we shall reduce the problem to the one-dimensional case. Let τν be
a Stein factor for ν. Then τ i(x) := E[τν(X)|Xi = x] is a Stein kernel for Xi.
Moreover, we have

S(ν|γ)2 =

∫ ∑
1≤i,j≤d

|τi,j − δi,j |2dν

≥
∫ d∑

i=1

|τi,i − 1|2dν ≥
d∑
i=1

E[|τ i(Xi)− 1|2] ≥
d∑
i=1

S(νi|γi)2,

where νi is the law of Xi and γi is the ith marginal of γ. Hence it is enough to
prove the theorem when d = 1.
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Now let X be a real-valued random variable with mean zero and unit variance,

and let νn be the law of the standardized sum 1√
n

n∑
i=1

Xi, where the Xi’s are

independent copies of X. Then

S(ν|γ)2 ≥ nS(νn|γ)2 (11)

for any n ≥ 1 (see for example Section 2.5 in [33] and Theorem 3.2 in the next
section). Moreover, it was established in [33] that the Stein discrepancy is always
larger than the Wasserstein distance W2 to the standard Gaussian measure. Hence
S(νn|γ)2 ≥ W2(νn, γ)2 for all n ≥ 1. Finally, Rio established in [44] that under
our assumptions,

√
nW2(νn, γ) −→ 1

3 |E[X3]|, which concludes the proof.

3.2 Strict Monotonicity of the Stein Discrepancy in the CLT

Monotonicity of information measures along the CLT have a long history, going
back to Shannon’s conjecture on the monotonicity of the entropy, which was even-
tually resolved in [2]. More specifically, if Sn = 1√

n

∑n
i=1Xi, where X1, . . . , Xn

are i.i.d. isotropic random vectors, then both the entropy and Fisher information
of Sn with respect to the standard gaussian measure are non-increasing in n. Fol-
lowing Artstein, Ball, Barthe and Naor’s proof of this fact, several generalizations
and alternative proofs have been discovered [50, 46, 35, 36, 37, 23].

Since the Stein discrepancy relates to both Fisher information and entropy in
various ways [33], it is natural to conjecture that it also is non-increasing along the
CLT. It turns out that this is indeed the case and, in fact, it is strictly decreasing.
The following generalizes (11) along these lines:

Theorem 3.2. Let ν be an isotropic probability measure on Rd, and let νn denote
the law of Sn = 1√

n

∑n
i=1Xi, where X1, . . . , Xn are i.i.d. with law ν. Then

S(νn|γ)2 ≤ m

n
S(νm|γ)2 1 ≤ m ≤ n.

Proof. For m ≥ 1, let τm denote a Stein kernel associated to Sm. Assuming such
a τm exists (if it does not, the claim is vacuous), then for all n ≥ m, the function

τn(sn) = E[τm(Sm)|Sn = sn] (12)

is a valid Stein kernel for Sn. Indeed, for sn =
√

m
n sm + s̃, any smooth function ϕ

evaluated on sn may also be considered as a smooth function of sm for each fixed
s̃. In particular, the chain rule directly yields

∇smϕ(sn) =

√
m

n
∇snϕ(sn).
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Therefore, starting with linearity of expectation and defining S̃ := Sn −
√

m
n Sm,

we may write

E〈Sn, ϕ(Sn)〉 =

√
n

m
E〈Sm, ϕ(Sn)〉

=

√
n

m
E[E[〈Sm, ϕ(Sn)〉|S̃]]

=

√
n

m
E[E[〈τm(Sm),∇smϕ(Sn)〉HS|S̃]]

= E[〈τm(Sm),∇snϕ(Sn)〉HS]

= E〈E[τm(Sm)|Sn],∇ϕ(Sn)〉HS,

establishing (12).
Following [23], if a function ϑ : Rd → R satisfies Eϑ(Sm) = 0, then

E[|E[ϑ(Sm)|Sn]|2] ≤ m

n
E[|ϑ(Sm)|2] 1 ≤ m ≤ n. (13)

This inequality is due to Dembo, Kagan and Shepp [26]; see also Kamath and
Nair [31]. Now, E[τm(Sm)] = Id, so a direct application of (13) yields

E‖τn(Sn)− Id ‖2HS = E[‖E[τm(Sm)− Id |Sn]‖2HS] ≤ m

n
E‖τm(Sm)− Id ‖2HS.

Taking the infimum over all valid Stein kernels τm, τn finishes the proof.

Remark 3.1. The same result holds if (2) is adopted as the definition of a Stein
kernel.

4 Applications

4.1 Quantitative central limit theorems

We shall now discuss some applications of the bounds to quantitative central limit
theorems in Wasserstein distance W2, which is defined as

W2(µ, ν)2 := inf
π

∫
|x− y|2dπ(x, y),

where the infimum is taken over all couplings π of the probability measures µ and
ν. We refer the reader to the textbook [51] for more information about Wasserstein
distances and optimal transport.

Let X be a centered isotropic random vector on Rd with law ν, and let νn be

the law of 1√
n

n∑
i=1

Xi, where the Xi are independent copies of X. As was already
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discussed in the proof of Theorem 3.1 (or as a particular case of Theorem 3.2), we
have the inequalities

W2(νn, γ)2 ≤ S(νn|γ)2 ≤ 1

n
S(ν|γ)2. (14)

From this remark, we immediately deduce the following result:

Theorem 4.1. Assume that ν is centered, isotropic and satisfies a Poincaré in-
equality with constant Cp. Then

W2(νn, γ)2 ≤ d(Cp − 1)

n
.

We remark that the rate W2(νn, γ) = O(1/
√
n) is known to be optimal in general.

Moreover, the dependence on the dimension is sharp, since it cannot be improved
for product measures. To our knowledge, this seems to be the first result with
sharp dependence on both the dimension and on n for W2 and with assumptions
satisfied by a large class of probability measures. A similar result can be obtained
with converse weighted Poincaré inequalities, with the same sharp rate but a less
explicit prefactor.

There are several similar results already present in the literature. In dimension
one, a more general result has been obtained by Rio in [43, 44], where a finite fourth
moment suffices. He also obtained convergence in stronger transport distances
when the random variable has a finite exponential moment, which is a weaker
assumption than our use of a Poincaré inequality. The proofs rely on an explicit
representation of transport maps involving the repartition function of ν, which is
unavailable in higher dimensions. Subsequently, Bobkov [11] combined optimal
rates in the entropic CLT [14] with Talagrand’s inequality to conclude O(1/

√
n)

convergence of W2(νn, γ) in dimension one, but left open the problem in higher
dimensions.

In the multidimensional setting, Zhai [53] has recently claimed that for random

variables in dimension d, we have W2(νn, γ) ≤ 5
√
dβ(1+logn)√

n
, under the bounded-

ness assumption |X| ≤ β almost surely. His assumptions are not directly compara-
ble with ours, since bounded random variables do not necessarily satisfy a Poincaré
inequality, while there are many examples of unbounded random variables that do
satisfy one. However, it is true that every bounded random variable regularized
via convolution with a Gaussian measure of arbitrarily small variance does satisfy
a Poincaré inequality [10], which suggests that Zhai’s result may potentially be
improved to have optimal dependence on both dimension and n. Unfortunately,
the bounds on the Poincaré constant obtained in [10] are exponential in β, so it
is not clear whether Zhai’s result may be recovered from our own via this route.
In situations where both estimates apply, the bound in the present work will
typically be smaller. For example, for high-dimensional product measures, the
Poincaré constant is independent of the dimension, while β would be of order of√
d. Moreover, we eliminate the extra log n factor. It may be relevant to point
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out that both our assumptions and those of [53] fit in the framework of random
variables with a finite exponential moment.

Also in higher dimensions, Bonis showed in [16] that, under the moment con-
straint E‖X‖2+m < ∞ for m ∈ [0, 2], we have the asymptotic rate W2(νn, γ) =
O(n−1/2+(2−m)/4). However, in the case m = 2, the prefactor (which does not
appear explicitly in Bonis’ work) seems to have a suboptimal dependence on the
dimension d [17].

In dimension 1, and for log-concave measures in higher dimension, the works
[7, 8, 30] can be used to obtain a sharp rate of convergence in relative entropy
when a Poincaré inequality holds, which implies convergence in W2. These results
however would rely on a bound on the relative entropy of ν, which in general
would give a worse prefactor in the bound.

While the arguments we used rely on the independence of the Xi, we do
not actually need them to be identically distributed. In particular, we have the
following result:

Theorem 4.2. Assume that Xi is isotropic and satisfies a Poincaré inequality

with constant Ci. Let νn be the law of 1√
n

n∑
i=1

Xi. Then

W2(νn, γ)2 ≤ d

n2

n∑
i=1

(Ci − 1).

It is also possible to extend the method to weakly dependent random variables,
using a standard splitting trick:

Theorem 4.3. Let (Xi) be a sequence of centered isotropic random variables, and
assume that there exists a k such that as soon as |i− j| > k then Xi and Xj are
independent. Assume moreover that E[Xi ·Xj ] = 0 for all distinct i, j, and that the
law of each random variable satisfies a Poincaré inequality with uniform constant
Cp. Then

W2(νn, γ)2 ≤ d(Cp − 1) + 2dk

bn/kc

where νn is the law of Sn := 1√
n

n∑
i=1

Xi.

As an example, this theorem applies to Xi :=
k−1∏
j=0

fj(Yi+j) with the Yi i.i.d.

random variables satisfying some Poincaré inequality and the fj bounded lipschitz
functions with mean zero and unit variance.

Proof. We can define the partial sums

Sjn :=
1√
n

n−1∑
i=0

Xi(k+1)+j
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for j = 1, .., k. Then each Sjn is a sum of independent random variables, so we can
apply Theorem 4.2 to obtain convergence in W2 distance to the Gaussian, i.e.

W2(νj,n, γ)2 ≤ (Cp − 1)d

n

where νj,n is the law of Sjn. Since Skn = 1√
k

k∑
j=1

Sjn, it is easy to check that

W2(νkn, γ)2 ≤ 1
k

∑
W2(νj,n, γ)2 ≤ (Cp−1)d

n . Moreover,

W2(νkn+j , γ)2 ≤ kn

kn+ j
W2(νkn, γ)2 +

2dj

kn+ j
,

where we split the sum and used the fact that the Wasserstein distance is bounded
by the second moment to control the contribution of Xnk+1, .., Xnk+j .

4.2 Entropy bounds

Let Hγ(ν) :=
∫
dν log dν

dγ denote the entropy of ν relative to γ. As a direct conse-
quence of the HSI inequality of [33], we also have the following rate of convergence
in the entropic CLT:

Proposition 4.4. Assume that ν satisfies a Poincaré inequality with constant Cp,
and satisfies the Fisher information bound

∫
|∇ log f |2dγ ≤ αd, where f = dν

dγ .
Then we have

Hγ(νn) ≤ d(Cp − 1)

2n
log

(
1 +

αn

(Cp − 1)

)
Convergence to the Gaussian measure in entropy is strictly stronger than con-

vergence in W2, due to Talagrand’s inequality [49]. The choice of scaling in the
dimension for the upper bound on the Fisher information reflects the fact that for
product measures, it is of order d. In dimension one, the actual rate of convergence
in the entropic CLT is asymptotically 1/n under a fourth moment condition [13],
and non-asymptotically 1/n if the entropy of a single random variable is bounded
[14] (with a prefactor that is exponential in the entropy). When the Poincaré
inequality holds a non-asymptotic rate was obtained in [8, 1], and extended to
multi-dimensional random vectors having log-concave density in [7]. Related re-
sults in dimension one were obtained in [30].

4.3 Fisher information bounds

In this section, we shall combine our main estimate with results of [42] to obtain
bounds on the Fisher information of a sum of independent random variables,
to which we add a small Gaussian noise. To this end, recall that the Fisher
information of ν relative to γ is defined as Iγ(ν) :=

∫
|∇ log f |2dγ, where f = dν

dγ .
After applying Theorem V.3 in [42], we get
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Proposition 4.5. Let (Xi) be a collection of independent centered isotropic ran-

dom variables in Rd with Poincaré constants Ci. Let Wn :=
√

1− tZ+
√
t√
n

n∑
i=1

Xi,

where Z is a standard Gaussian random variable independent of the Xi. If νtn de-
notes the law of Wn, then

Iγ(νtn) ≤ t2

n2(1− t)

n∑
i=1

(Ci − 1)d.

In particular, if the Xi satisfy a Poincaré inequality with same constant Cp, then

Iγ(νtn) ≤ t2(Cp − 1)d

n(1− t)
.

Due to Cramer’s law [24], weak convergence of νtn to γ is equivalent to con-

vergence of 1√
n

n∑
i=1

Xi. Unfortunately, Cramer’s law is unstable in general [12],

so we cannot directly deduce quantitative closeness of X to a Gaussian if X + Z
is for any random variable (although the counterexamples of [12] do not seem to
satisfy a Poincaré inequality, so it may be that under such an extra assumption
Cramer’s law would be stable).

Rates of convergence in Fisher information in dimension one when the informa-
tion of a single variable is finite have been obtained in [30]. In higher dimension, a
quantitative bound on the difference between Fisher informations of ν1 and ν2 was
obtained in [29], but does not readily lead to a quantitative central limit theorem.

Remark 4.1. Instead of using the results of [42], it is possible to derive upper
bounds on Iγ(νtn) by W2(νn, γ)2 using the gradient flow structure of the Ornstein-
Uhlenbeck flow, as done for example in Theorem 24.16 of [52], and apply our
bounds on the rate of convergence in W2 distance to conclude.

4.4 Stability of the Poincaré constant under a second moment
constraint

Combined with the previously mentioned fact that Stein discrepancy controls W2

distance to γ, our bound on the Stein discrepancy implies the following estimate:

Theorem 4.6. Let ν be a centered probability measure on Rd, normalized so that∫
|x|2dν = d. Then its Poincaré constant Cp satisfies

Cp ≥ 1 +
W2(ν, γ)2

d
.

This estimate is a quantitative reinforcement of the fact that among all proba-
bility measures with the same second moment, the Gaussian has the best Poincaré
constant. More generally, it is a reinforcement of the fact that, given a sequence
of centered measures (νn) with

∫
|x|2dνn = d, if their Poincaré constants converge
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to 1, then νn weakly converges to the standard Gaussian [18]. Once again, we
note that this estimate depends optimally in the dimension.

In a different direction, De Philippis and Figalli [25] recently showed a similar
quantitative stability result among a different class of measures: for densities that
are of the form e−V γ with V convex, the Gaussian has the worst Poincaré constant,
and we have a deficit of the form 1− Cp ≤ ε =⇒ W1(ν, γ) ≤ C(d, α)| log ε|−1/4+α
for any α > 0, for ε small enough. Our results are not directly comparable,
since they concern completely different classes of measures. We just note that
the dependence in ε in the result of [25] is not expected to be sharp. Indeed, in
dimension one they show that W1(ν, γ) ≤ Cε. In spirit, this question is also similar
to the stability problem for the Szegö-Weinberger inequality, that was solved in
[19].

Finally, we observe that Theorem 2.7 leads to the more general analogous
result for measures satisfying a converse weighted Poincaré inequality. Although it
is easily seen that such inequalities are stable under log-bounded transformations
of the measure [21], the following appears to be the first quantitative stability
result along these lines:

Theorem 4.7. Let ν be a centered probability measure on Rd, normalized so that∫
|x|2dν = d. If ν satisfies a converse weighted Poincaré inequality with weight

function ω, then
1

d

∫
|x|2ω−1dν ≥ 1 +

W2(ν, γ)2

d
.

By Hölder’s inequality, the following corollary is immediate:

Corollary 4.8. Let ν be a centered probability measure on Rd, normalized so that∫
|x|2dν = d. If ν satisfies a converse weighted Poincaré inequality with weight

function ω, then for Hölder conjugate exponents 1 ≤ p, q ≤ ∞,

‖1d |x|
2‖Lp(ν)‖ω−1‖Lq(ν) ≥ 1 +

W2(ν, γ)2

d
.

Of course, Theorem 4.6 coincides with the special case where p = 1 and q =∞.
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